Instance-Based Learning with Genetically Derived Attribute Weights

نویسندگان

  • D. Randall Wilson
  • Tony R. Martinez
چکیده

This paper presents an inductive learning system called the Genetic Instance-Based Learning (GIBL) system. This system combines instance-based learning approaches with evolutionary computation in order to achieve high accuracy in the presence of irrelevant or redundant attributes. Evolutionary computation is used to find a set of attribute weights that yields a high estimate of classification accuracy. Results of experiments on 16 data sets are shown, and are compared with a non-weighted version of the instance-based learning system. The results indicate that the generalization accuracy of GIBL is somewhat higher than that of the non-weighted system on regular data, and is significantly higher on data with irrelevant or redundant attributes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

An optimized instance based learning algorithm for estimation of compressive strength of concrete

This article proposes an optimized instance-based learning approach for prediction of the compressive strength of high performance concrete based on mix data, such as water to binder ratio, water content, super-plasticizer content, fly ash content, etc. The base algorithm used in this study is the k nearest neighbor algorithm, which is an instance-based machine leaning algorithm. Five different...

متن کامل

Multiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach

For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...

متن کامل

Integrating instance-level and attribute-level knowledge into document clustering

In this paper, we present a document clustering framework incorporating instance-level knowledge in the form of pairwise constraints and attribute-level knowledge in the form of keyphrases. Firstly, we initialize weights based on metric learning with pairwise constraints, then simultaneously learn two kinds of knowledge by combining the distance-based and the constraint-based approaches, finall...

متن کامل

Experiments in Graph-Based Semi-Supervised Learning Methods for Class-Instance Acquisition

Graph-based semi-supervised learning (SSL) algorithms have been successfully used to extract class-instance pairs from large unstructured and structured text collections. However, a careful comparison of different graph-based SSL algorithms on that task has been lacking. We compare three graph-based SSL algorithms for class-instance acquisition on a variety of graphs constructed from different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996